If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35v^2-10v=0
a = 35; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·35·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*35}=\frac{0}{70} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*35}=\frac{20}{70} =2/7 $
| 10.2/100=17/x | | -6n-3=-8+4+9 | | 17/100=10.2/x | | 3q=9+2q | | 2p-3=27 | | 5x+15+105=180 | | -6-p=-4p | | t/2+t/3-1=0 | | 2/5(y+5)=4/5 | | 3z-8+6z-12=z+10-13+9z-13 | | 10+4g=-g-10 | | 6h-32=-34=-6h+6 | | 10m=8m+4 | | 560+28(h-40)=h=812 | | 6x-5=4x+31 | | -w-7=-2w | | -2n-3n=2/9 | | 3x2x=96 | | 5x10=(-20) | | 70=-7m | | -2(r+6=-31 | | (x-6)^2=49 | | 21y+16=77 | | W-20=6e | | -8-2g=-g | | 3(x-10+2x=5 | | a=0.025×8000 | | 4−2m=2 | | 2/3b+5=20-b*2 | | 21/6=x/10 | | 9x-2=7x-30 | | (x-3)(x+2)(x+4)=1 |